3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering
نویسندگان
چکیده
Abstract Piezoelectricity in native bones has been well recognized as the key factor bone regeneration. Thus, bio-piezoelectric materials have gained substantial attention repairing damaged by mimicking tissue’s electrical microenvironment (EM). However, traditional manufacturing strategies still encounter limitations creating personalized scaffolds, hindering their clinical applications. Three-dimensional (3D)/four-dimensional (4D) printing technology based on principle of layer-by-layer forming and stacking discrete demonstrated outstanding advantages fabricating scaffolds a more complex-shaped structure. Notably, 4D functionality-shifting can provide time-dependent programmable tissue EM response to external stimuli for In this review, we first summarize physicochemical properties commonly used (including polymers, ceramics, composites) representative biological findings Then, discuss latest research advances 3D terms feedstock selection, process, induction strategies, potential Besides, some related challenges such scalability, resolution, stress-to-polarization conversion efficiency, non-invasive ability after implantation put forward. Finally, highlight shape/property/functionality-shifting smart engineering (BTE). Taken together, review emphasizes appealing utility 3D/4D printed piezoelectric next-generation BTE implants.
منابع مشابه
Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملPiezoelectric smart biomaterials for bone and cartilage tissue engineering
Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their th...
متن کاملA Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration
Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...
متن کاملaligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (pcl), poly (vinyl alcohol) (pva) and hydroxyapatite nanoparticles (nha). the morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملComposite Scaffolds for Bone Tissue Engineering
Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid) and poly(lactic acidco-glycolic acid) are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of extreme manufacturing
سال: 2023
ISSN: ['2631-8644', '2631-7990']
DOI: https://doi.org/10.1088/2631-7990/acd88f